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Important Steps in Implementing 
Systems Analysis Tools

1. Understand what questions should be asked
2. Answer the questions
3. Show technical trade-offs through 

partnerships
4. Use industry tools and co-simulation if 

possible
5. No one system tool gives all the answers –

use a suite of tools
6. If analysis doesn’t show unique insight, then it 

doesn’t earn value
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Improving Battery Performance
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IndustryIndustry
GovernmentGovernment

PublicPublic

Integrated Battery Modeling and Testing 
Activities with others organizations

NRELNREL
System AnalysisSystem Analysis

NRELNREL
Battery Testing Battery Testing 
and Modelingand Modeling

ModelsModels

DataData

BatteryBattery
ManufacturersManufacturers

UniversitiesUniversities

NationalNational
LaboratoriesLaboratories

HardwareHardware
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Integrated Battery Modeling and 
Testing Activities at NREL 

ThermalThermal
TestingTesting

VehicleVehicle
Systems ModelingSystems Modeling

NRELNREL

ThermalThermal
ModelsModels

PerformancePerformance
ModelsModels

Batteries
Ultracapacitors

Hybrid ES
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DAIMLERCHRYSLER

Collaborating with Industry

EV applicationsOptimum charging Zinc-Air

Ovonic NiMH

BOLDER
Technologies

University of
Toledo

Compact PowerCompact PowerCompact PowerCompact Power
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Improving Thermal Design 
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Thermal analysis could improve 
module thermal performance

With HolesWith Holes

Tmax = 44ºC
Delta Tcore = 9ºC

No HolesNo Holes

Tmax = 53ºC
Delta Tcore = 13ºC

Cell coreCell core

Plastic Plastic 
casecase

Air
gap
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• We are working with University of 
Toledo to evaluate various AC heating 
techniques

• Initial results show that a non-operation 
lead acid battery at -40°C can be warm 
up quickly to deliver satisfactory power

Evaluating High Frequency AC Heating of 
Batteries at very Cold Temperatures

Analysis has shown that core 
heating batteries is the most 
efficient and effective method.

Core heating can be achieved by 
applying high frequency AC 
power through battery terminals

Because of high battery 
resistance at low temperature 
battery heat up
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ADVISOR and Technical Targets Tool
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Introduction to ADVISOR
ADVISOR = ADvanced VehIcle SimulatOR
– simulates conventional, electric, and hybrid 

vehicles (series, parallel, or fuel cell)
Distributed freely to public on NREL’s web site
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ADVISOR’s User Growth Has Exceeded 
Expectations (over 6,000 people)
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2/3 of Users are from Industry,
Major Auto OEMs, and Suppliers
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ADVISOR’s Basic Structure (models) 
in Matlab/Simulink Environment

BlockBlock
DiagramDiagram

LibrariesLibraries

BatteryBattery

EngineEngine
ControlControl
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ADVISOR’s Basic Structure (database):
How Data/Models are Pulled into the GUI

BlockBlock
DiagramDiagram GUIGUI

Data FilesData Files
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Three Main ADVISOR GUI Screens

Vehicle InputVehicle Input

Simulation SetupSimulation Setup

ResultsResults
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Demonstration of ADVISOR 2002
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What Does Industry Have to Say About NREL’s 
Systems Analysis Team and ADVISOR?

“These are very powerful tools and essential in the 
development of our hybrid vehicles at DaimlerChrysler.”
Min Sway-Tin, Supervisor HEV Electrical Engineering
HEV Platform Engineering
DaimlerChrysler Corp.

“ADVISOR has been invaluable in Delphi's 
development of codes to predict the 
performance of stop/start and integrated 
starter generator vehicles.” 

John MacBain
Staff Research Engineer 

Delphi Automotive Systems

“… We have found this collaboration to be very 
helpful since the NREL team brings new, 
fresh, out-of-the-box ideas and high level 
technical expertise.”

Tsung-Yu Pan, Ph.D.
Senior Technical Specialist, Manufacturing Systems 

Ford Research Laboratory 
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Technical Targets Tool Motivation:
Produce National Impacts Due to Potential Changes in Technical Targets

Source: Tom Gross presentation at Clean Cities Day 3/12/02
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Objectives of Technical Targets Tool

Provide a tool to 
assess/compare impact of 
various tech team targets 
Allow changes tech team 
target values, and have 
ADVISOR define vehicles 
and estimate fuel 
efficiency
Consider the ability of the 
new technology vehicle to 
penetrate a multi-platform 
market
Figure of Merit: national national 
oil savingsoil savings
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Technical Targets Tool Approach

Market Characterization

• Segment market into vehicle 
platforms

• Define segment/vehicle  
requirements, mpg

National Oil Use
Project market penetration 
and resultant oil use

Technology Assessment

Goal: Meet tech targets and 
market requirements for each 
platform

Result: Segment Y/N, mpg

User
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Technical Targets Tool Flow

ADVISOR MODULE
1. Convert targets to component specs
2.  Define NTV for each EPA class
3.  Run performance tests/drive cycle
4.  Compare results to performance 
reqs
5.  Set Class Penetration Indexes

Target Values

Model 
Parameters NTV CPIs/MPGs
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Reference Vehicle Attributes

Physical
– Curb mass, glider mass, 

CD, Af, wheelbase, tires
– Available space for new 

powertrain 
Fuel Converter -
Transmission
– Max power and torque, 

transmission type
Performance 
– Acceleration
– Gradeability
– Fuel economy
– Range



25

Available Propulsion Package Volume

• Vehicle Classified Pass & Cargo Volume Index
• Change out of Index Range is Change in Class

• Finite Propulsion Space Available within Vehicle
• New Technology must Package 
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T3 Demonstration
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Example of Results Screen
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Predicting National Fuel Used for A/C
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Predicting National Fuel Used for AC

Use Multiple Models/Inputs/Data Sets
– Environmental Conditions (Temp, RH, W/m2)
– Thermal Comfort Models
– Vehicle Simulations (Fuel Economy Reduction with AC)
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Environmental Conditions:
Denver, CO, Mean Radiant Temperature
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Thermal Comfort Model:
Percent of People Using AC
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Vehicle Usage with Time of Day, Month

Source: 1995 National Personal Transportation Survey
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Percent of Time AC is On
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Fuel Economy Impact: Vehicle 
Simulations

Drop in Fuel 
Economy 

400-4000 W

3X: 56%

FC: 52%

Insight: 32%

Prius: 27%

1X: 26%
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Vehicle Registrations

Source: Wards 2001 Automotive Yearbook
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National Fuel Used for AC

7.1 billion gallons used for air conditioning annually
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Optimizing Components
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Example of Applying Optimization 
Techniques Fuel Cell Hybrid SUV

Objective: Maximize fuel economy of Fuel Cell Hybrid SUV

Optimizing coupled problem of sizing and control strategy leads to improved 
solution

Multiple local optimums in HEV design space

Traditional: local Non-traditional: global
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Using ADVISOR in an Optimization Loop
as both the Function Call and Constraint Evaluation

OptimizationOptimization
ToolsTools

ADVISORADVISOR

g(x)g(x)

ConstraintConstraint
FunctionFunction

f(x)f(x)

ObjectiveObjective
FunctionFunction

Typical optimization loops Typical optimization loops 
this 100this 100--2000 times2000 times

~5~5--10 drive cycle iterations 10 drive cycle iterations 
for SOC balancingfor SOC balancing

•• AccelerationAcceleration
•• GradeabilityGradeability
•• SOC balancedSOC balanced
•• Must follow cycleMust follow cycle
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Concept of “ADVISOR Inside” Used 
With Technical Targets Analysis Tool

g(x)g(x)

ConstraintConstraint
FunctionFunction

f(x)f(x)

ObjectiveObjective
FunctionFunction

TechnicalTechnical
Targets ToolTargets Tool

ADVISOR Called Externally 
by Technical Targets Tool
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Complex Design Space of HEVs
Fuel Economy vs. 2 energy management parameters

• Note:This only represents small portion (~1/25th) of 2 dimensions of an 8 dimensional space
• We are actually now doing parametric sweeps of these optimization problems (~3000 calls/per point)
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Characteristics of Components for 
Optimized Vehicles
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Optimization of Fuel Cell Vehicle Design 
Provides Insight into System Trade-offs

Coarse parametric sizing study 
indicated optimal fuel cell to system 
power ratio of 0.25-0.3 for fuel 
economy
Determined that derivative-free 
optimization algorithms necessary 
for complex design space of HEVs
Drive cycle influences optimal 
degree of hybridization and control 
parameters

– NEDC provides robust design
Fuel cell transient response 
capability critical for neat fuel cell 
vehicle 
An optimized hybrid design can 
nullify the effects of fuel cell 
transient response
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Digital Functional Vehicle
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Recent DFV Applications
Petroleum Consumption, Technical Hurdles, Transfer to Industry
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Tools for Optimizing Light-weight Designs 
with Structural Integrity

Crash SimulationTopology Optimization

Time to Market

Space
Envelope
Optimization
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Parametric Solid Modeling Integrated with 
FEA and Design of Experiments

Highly non-linear structural FEA

Parametric Model 
linked to 

Design of Experiments

“EAGLE” Supercomputer
3600 CPU hours
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Robust Optimization for 
Weight Reduction and 6σσσσ Quality

Parametric FEA Integrated with 
Statistical Sampling of Input 
Parameter Distributions (material 
properties, load distributions, 
manufacturing variations) for 
Lightweight Designs with 6 σ Quality
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Enabling Critical Technologies
thermal management of critical components

Multi-Physics Modeling
conjugate solutions of thermal, 

structural, 
fluid-flow, 

electromechanical problems
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Reducing Vehicle Ancillary Loads
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Where Does the Energy Go?

Input
100%
(48.8)

Rolling
5.0% (2.4)

Acc.
2.8%
(1.4)

Engine
79.3% (38.6)

Aero.
5.3% (2.6)

Driveline
3.4% (1.7)

Braking
2.5% (1.2)

21.3 city, 39 highway: 26.7 mpgge Use Waste 
Heat to 
Power 

Alternative 
AC Systems

w/AC
10%
(5.6)

Reduce Size 
of Existing 

AC Systems

Conventional Vehicle 
Energy Use for Composite 

FTP & Highway, (MJ)
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Systems Approach

REDUCE LOAD

EFFICIENT DELIVERY

EFFICIENT EQUIPMENT

Traditional Approach - Equipment Emphasis

VERSUS

Decreases in load have a larger impact on fuel use due  to equipment and delivery losses.
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What Can Be Done?

•• Efficient DeliveryEfficient Delivery

•• To the occupantTo the occupant

SC03 Drive Cycle

Qsolar = 1600 Watts
Qpass = 200 Watts
Initial Cabin Temperature = 75 C

System R134a Mass = 2.15 lbms

Optimum Design

SINDA/FLUINT Model

SC03 Drive Cycle

Qsolar = 1600 Watts
Qpass = 200 Watts
Initial Cabin Temperature = 75 C

System R134a Mass = 2.15 lbms

Optimum Design

SINDA/FLUINT Model

•• Efficient Cooling EquipmentEfficient Cooling Equipment

•• Closed loop control Closed loop control –– cabin feedbackcabin feedback

•• Engine waste heatEngine waste heat

•• OptimizationOptimization

•• Reduce LoadReduce Load

•• Solar Reflective GlazingSolar Reflective Glazing

•• Body InsulationBody Insulation

•• Parked Car VentilationParked Car Ventilation
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An
Integrated
Systems
Modeling
Approach

Is
Needed for 

Diverse
Technology

and
Supplier
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Abs. & Trans.
Radiation

CAD
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Vehicle
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Temp. & Vel.
Fields (X;t)
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Geometry

Occupant
Thermal Comfort

Total Solar
Radiation

A/C Output
(T, v, RH;t)

A/C Load on
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Fuel
Economy

Tailpipe
Emissions
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Orientation

Optical
Properties

Component
Thermal
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Radiant Load
on Occupants

Location,
Time of Year

Drive
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Environmental
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A/C Component
Maps

Vehicle
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Light Source
Spectrum

Legend

Inputs
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Final

Results

Vehicle
Dimensions

Interim
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Exhausters

YES ACCEPTABLE? NOImplement Design Change Model Inputs

Environmental
Conditions
(v, T, RH)
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Vehicle Solar Load 
Estimator
(VSOLE)
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ADVISOR Linked With Many Other Models to Allow
Detailed Investigation into Specific Areas

Vehicle Solar Load
Estimator
(VSOLE)

Transient A/C
System Model

(SINDA/FLUINT)

ADVISOR

VEHICLE
FUEL

ECONOMY

VEHICLE
EMISSION
TRENDS

Solar loadSolar load

CompressorCompressor
Power & cabin tempPower & cabin temp

Other models generateOther models generate
boundary conditionsboundary conditions

for ADVISORfor ADVISOR
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Transmitted
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Reflected

Conventional Windshield

Infrared Reflecting Windshield
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Transmitted
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Conventional Windshield
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Vehicle A/C Modeling
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A/C System COP Optimization

System Perspective
Two-Phase Flow in 
Condenser and 
Evaporator
Strongly Dependent 
on Multiple 
Variables
Single Variable 
Optimization
Inaccurate

Dual Variable (Transfer Line Diameter : Condenser Tube Diameter) COP Optimization

SC03 Drive Cycle
Qsolar = 1600 Watts
Qpass = 200 Watts
Initial Cabin Temperature = 75 C
System R134a Mass = 2.15 lbms

Optimum Design

SINDA/FLUINT Model

COP Maximization vs. Transfer Line 
Diameter and Condenser Tube Diameter
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Vehicle CAD and 
Thermal/Fluid Modeling
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Vehicle Mesh – 450,000 cells
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Results - 0, 10, and 20 minutes

T=10s

T=610s

T=1190s

Solar Windshield 
Reduced A/C

Conventional Glass All Solar Glass 
Reduced A/C
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Cabin with Conventional Glazing
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Cabin with Solar Reflective Glazing 
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NREL’s Industry Partnerships
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Heat Pipe I.P. Test
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Efficient Delivery:
Heated/Cooled Seats
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Potential uses for Systems Analysis in 
Solar/Renewable Applications

How does our nation’s total solar generation 
increase over time?  We could plot solar-
generated power by state by day and year.
Where are the solar collectors?  What is the 
daily variability in those areas?
Which states are leaders in renewable 
energy?
How can DOE give incentives to states to 
build more renewable/solar resources?
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On Target for a Systems Approach

Opportunities surround you
Use existing resources
Industry partnerships can play a big role
Ask the right questions
Think outside the box – be creative!


